CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027

Transition Metal Borohydride Complexes. III.¹ The Structure of Octahydrotriboratobis(**tripheny1phosphine)copper** (I)

BY STEPHEN J. LIPPARD2 AND KENNETH M. MELMED3

Received June 2, 1969

The crystal aud molecular structure of **octaliydrotriboratobis(triphenylphosphine)copper(** I) has been determined by a threedimensional X-ray crystallographic analysis. The colorless compound crystallizes in the monoclinic system, space group P2₁/c, with unit cell dimensions $a = 11.378$ (5) \hat{A} , $b = 20.66$ (1) \hat{A} , $c = 18.13$ (1) \hat{A} , $\beta = 127.05$ (5)^o, and $Z = 4$. From \sim 2800 independent observable reflections collected by diffractometer, the structure was solved and has been refined by least-squares techniques to a final value for the discrepancy index, *R,* of 0.078. The crystal is composed of monomers in which the copper atom is coordinated to two triphenylphosphine ligands (Cu-P = 2.281 \pm 0.007 Å, P-Cu-P = 120.0 \pm 0.1°) and to two hydrogen atoms on different boron atoms of the B_8H_8 ⁻ group (Cu-H = 1.84 \pm 0.05 Å; H-Cu-H = 103 \pm 2'). These structural features correlate well with results found for other **bis(triphenylphosphine)copper(I)** complexes and for the octahydrotriborate group in the $(OC)_4Cr(B_3H_8)^-$ anion. The geometries of the free and coordinated $B_3H_8^-$ ion are shown to be comparable. The infrared spectra of $L_2Cu(B_3H_8)$ complexes, where L is triphenylphosphine, triphenylarsine, or diphenylmethylphosphine, are discussed with reference to the known $Cu-B₈H₈$ attachment.

Introduction

The structural and chemical properties of transition metal borohydride complexes have been the subject of recent studies. 1.4 Because of their ready accessibility,^{1,5,6} copper(I) complexes of general formula $L_2Cu(BH_4)$ have been the most thoroughly investigated. As described previously,¹ copper(I) complexes of the octahydrotriborate ion,^{7,8} B₃H₈-, were prepared in order to provide further information about the factors responsible for the stabilizing effect of certain ligands, notably triarylphosphines, on the copper-borohydride attachment. The structure of one such complex, $[(C_6H_5)_3P]_2Cu(B_3H_8)$, was of particular interest since the structure of the related borohydride complex is known.⁴ In addition, since the B_3H_8 ⁻ ion may be undergoing rapid intramolecular rearrangements in solution, 9 it seemed worthwhile to investigate whether its solid-state structure in the complex resembled that of the free octahydrotriborate ion.¹⁰ The present paper provides definitive information on these points through a single-crystal X-ray diffraction study of $[(C_6H_5)_3P]_2Cu(B_3H_8)$. The mode of attachment of the octahydrotriborate ion to the copper atom conforms to the structural prototype previously found⁸ for $(OC)_4$ - $Cr(B_3H_8)^-$.

Unit Cell and Space Group Determination

The compound $[(C_6H_5)_3P]_2Cu(B_3H_8)$ was prepared as reported previously' and recrystallized slowly from

(4) S. J. Lippard and K. M. Melmed, *J. Am. Chem. Soc.,* **89,** 3929 (1967); *Inovg. Chem.,* 6,2223 (1967).

(7) The potential utility of this ion as a ligand for transition metal complexes was first drawn to our attention by a formal proposal of Mr. Peter

Stokely (MIT, 1966) and has recently been demonstrated by other workers.8 *(8)* F. Klanberg and L. J. Guggenberger, *Chem. Commun.,* 1293 (1967); *F.* Klanberg, E. L. Muetterties, and L. J. Guggenberger, *Inovg. Chem.,* 7,2272 (1968).

chloroform-ethanol. Optical exaniination showed the colorless crystals to have 2/m symmetry. Several crystals were mounted on the ends of glass fibers with hard shellac along the unique axis. After an approximate alignment on the optical goniometer, the crystals were tranferred to the Weissenberg and precession cameras for unit cell and space group determinations using Ni-filtered Cu K $\bar{\alpha}$ radiation (λ 1.5418 Å). The Laue symmetry 2/m and observed extinctions $h0l, l \neq$ $2n$, and $0k0$, $k \neq 2n$, uniquely suggested the space group to be $P2_1/c$ (no. 14),¹¹ a choice later proved correct by the successful refinement of the structure. The unit cell parameters were accurately determined by a least-squares technique in which the cell constants were refined to give the best fit between calculated and observed settings x , ϕ , and 2θ for 21 independent reflections, carefully centered in the counter window of a Picker four-circle automated X-ray diffractonieter,¹² The results are $a = 11.378 \pm 0.005$ Å, $b =$ 20.66 ± 0.01 Å, $c = 18.13 \pm 0.01$ Å, and $\beta = 127.05$ $\pm 0.05^{\circ}$ at room temperature *(ca.* 23°). The computed cell volume $(V = 3400 \text{ Å}^3)$ and experimental density $(\rho = 1.19 \pm 0.02 \text{ g/cm}^3$, measured by flotation in aqueous KI solutions) require four molecules per unit cell. The calculated density of 1.22 g/cm³ is in reasonable agreement with that observed.

Collection and Reduction **of** Intensity Data

Intensity data were collected on the Picker diffractometer using a crystal which resembled an obliquely cut elliptical cylinder of approximate dimensions 0.20 \times 0.15 \times 0.23 mm, with an oblique angle of *ca*. 144^o.

⁽¹⁾ Part **11:** S. J. Lippard and D. **A.** Ucko,Inovg. *Chem., 7,* 1051 (1968).

⁽²⁾ Alfred P. Sloan Foundation fellow.

⁽³⁾ National Institutes of Health predoctoral trainee.

⁽⁵⁾ J. M. Davidson, *Chem. Ind.* (London), 2021, (1964).

⁽⁶⁾ F. Cariati and L. Naldini, *Gaee. Chim. Itd.,* **96,** 3 (1965).

⁽⁹⁾ W. N. Lipscomb, *Advan. Inovg. Chem. Radiochem.,* **1,** 132 (1959).

⁽¹⁰⁾ C. R. Peters and *C.* **E.** Nordman, J. *Am. Chem. Soc.,* **81,** 5758 (1960).

^{(11) &}quot;International Tables for X-Ray Crystallography," Vol. I, The Kynoch Press, Birmingham, England, 1962, p 99.

⁽¹²⁾ Programs for the IBM 7094 and 360-75 computers used in this work include local versions of: **MODE-1,** the Brookhaven diffractometer setting program and cell constant and orientation refinement program; **GSET,** the Prewitt diffractometer setting program: ACAC-3, a revised version of the Prewitt absorption correction and data reduction program; **XDATA,** the Brookhaven Wilson plot program; the Zalkin Fourier program, **FORDAP**; the Busing-Martin-Levy structure factor calculation and least-squares refinement program, **OR-FLS;** and the Busing-Martin-Levy error function program, **OR-FFE.**

TABLE I OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (IN ELECTRONS \times 10) FOR $[(C_6H_5)_8P]_2Cu(B_3H_8)^a$

The crystal was mounted along the *b* axis. The mo- at $23 \pm 2^{\circ}$. Experimental details are as reported

saicity of the crystal was checked by ω scans for several previously⁴ with the following changes: the scan range high-angle reflections and found to be acceptable. was 1.25° in 20 plus the K α_1 - K α_2 difference, the Data were obtained with Ni-filtered Cu K $\bar{\alpha}$ radiation take fangle was 2.4°, and the symmetrically varying r takeoff angle was 2.4°, and the symmetrically varying re-

 T_{ADID} T_{ADID}

^aThe calculated value of *F(000)* is 13,050.

ceiving aperture was set to a 3.0×3.0 mm opening. Efficient data collection was achieved by programming the diffractometer to scan the shortest reciprocal lattice directions first, resulting in an over-all efficiency (including the standard reflections) of 70% . All of the independent reflections within the sphere $\theta \leq 48^{\circ}$ were collected in a period of 6 days.

The raw data were corrected for background, use of attenuators, absorption, and Lorentz-polarization effects as indicated previously.⁴ Absorption corrections $(\mu = 19.4 \text{ cm}^{-1})$ calculated by the program ACAC were checked against an experimental measure of the change in peak intensity with ϕ for several reflections at $x = 90^{\circ}$; excellent agreement was obtained. The transmission factors ranged from 0.50 to 0.75. The data were then placed on an approximately absolute scale through a modification of Wilson's method.¹² From the resultant values for $|F_{\rm o}|$ and $|F_{\rm o}|^2$, the structure was solved by the usual Patterson, Fourier, and least-squares refinement processes (see below). Scattering factor tables, appropriately corrected in the cases of copper and phosphorus for anomalous dispersion,¹³ were obtained from the "International Tables for X-ray Crystallography."¹⁴ Form factors used were for the neutral atoms. Weights, $w = \sigma(F)^{-2}$, were assigned to each reflection according to¹⁵

$$
\sigma(F) = (LpT)^{-1/2} [(I + \sigma(I))^{1/2} - I^{1/2}]
$$

where L , p , and T are the Lorentz, polarization, and transmission factors, respectively, I is the integrated intensity corrected for background and attenuators, and $\sigma(I)$ is the standard deviation of I, estimated¹⁶ to be

$$
\sigma(I) = [E + (T_{\rm E}/2T_{\rm B})^2(B_1 + B_2) + (\epsilon I)^2]^{1/2}
$$

In the above expression, *E* is the total counts in the peak plus background observed for a scan time *TE, B1* and *Bz* are the background counts observed for time T_B at each extreme of the scan, and ϵ is the "ignorance factor,"^{16c} set equal to 0.03, to prevent excessively high weight being given to the strong reflections. Of the 3000 reflections, those for which $I \leq 2\sigma(I)$ were excluded from the refinement (~ 200) reflections). All subsequent calculations were performed on the remaining 2805 reflections.

Determination and Refinement **of** the Structure

Using the corrected data, an origin-removed, sharpened Patterson map was computed and solved for the positions of the copper and two phosphorus atoms, all in general positions *(x, y, z)* of the space group $P2₁/c$. A cycle of least-squares refinement of the overall scale factor and positional parameters was then carried out and the results were used to determine the signs of the structure factors for a difference Fourier synthesis. From the Fourier map several light atoms were located and then used together with copper and phosphorus atoms to phase a second Fourier synthesis. A third iteration of this procedure yielded all **39** carbon and boron atoms in the asymmetric unit. Three cycles of least-squares refinement of the scale factor, atoniic positional parameters, and isotropic thermal parameters resulted in convergence at values of 0.109 and

⁽¹³⁾ See ref 11, Vol. III, p 213 ff.

⁽¹⁴⁾ See ref 11, Voi. **111,** pp 202,210.

⁽¹⁵⁾ D. E. Williams and R. E. Rundle, *J. Am. Chem. Soc.*, 86, 1660 (1964).

^{(16) (}a) G. M. **Brown** and H. **A.** Levy, *J. Phrs.* (Paris), **26,** 497 (1964), **(b)** R. D. Ellison and H. **A.** Levy, *Ada Ciyst.,* **19,** 260 (1065); *(c)* P. W. I<. Corfield, R. J. Doedens, and J. A. Ibers, *Inorg. Chem.*, **6**, 197 (1967).

TABLE 11 FINAL PARAMETERS FOR $[(C_6H_5)_3P]_2Cu(B_3H_6)^{a\cdot b}$

0.125 for the discrepancy factors $R_1 = \sum ||F_0|$ – respectively.

point indicated several possible hydrogen atom peaks and some nonisotropic thermal motion for all atoms, Examination of a difference Fourier map at this parameters of the form

0.125 for the discrepancy factors $R_1 = \sum ||F_0|$ — but especially the copper and phosphorus atoms. Be-
 $|F_e||/2|F_0|$ and $R_2 = (\sum w(|F_0| - |F_0|)^2/\sum w|F_0|^2)^{1/2}$, cause of computer storage limitations, it was decided but especially the copper and phosphorus atoms. Beto continue refinement assigning anisotropic thermal

 $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$

Phenyl Ring Hydrogen Atom Positional Parametersd

^a See Figures 1 and 2 for the atom-labeling scheme. ^b Standard deviations, in parentheses beside each entry, occur in the last significant figure for each parameter as derived from the inverse matrix of the final least-squares refinement cycle. In form of the aniso*d* indicant figure for each parameter as derived from the inverse matrix of the final least-squares refinement cycle. ^c The form of the anisotropic thermal ellipsoid is: $\exp[-(\beta_1 h^2 + \beta_{2k} h^2 + \beta_{3l} h^2 + 2\beta_{12} h k + 2\beta_{$ from 3 to $20 \pm 4 \AA^2$, with an average of 9 \AA^2 . \bullet Atoms are labeled to correspond to their respective carbon atoms (Figure 1).

to the copper, phosphorus, and boron atoms, and isotropic temperature factors to all other atoms. The boron atoms were refined anisotropically in order to provide the best conditions for locating the hydrogen atoms of the B_3H_8 ⁻ group. Difference Fourier maps calculated after this refinement again showed evidence for nonisotropic thermal motion of the carbon atoms but, in addition, revealed 32 peaks, with an average peak height of 0.65 e^{-/ \AA ³, in the regions where the 38} missing H atoms were expected to occur. Hydrogen atoms of the B_3H_8 ⁻ group were quite distinct (~ 0.7) e^{-}/\hat{A}^{3} at this stage.

Subsequent structure factor calculations and leastsquares refinements were carried out in which the Cu, P, and **13** positional and anisotropic thermal parameters and the C and octahydrotriborate hydrogen positional and isotropic thermal parameters were varied. Thermal parameters for the phenyl ring hydrogen atoms were initially assigned the same values as those of the carbon atoms to which they were attached and their atomic coordinates were changed by the amount of change in the positions of the corresponding carbon atoms. Since it was still not possible to find the six remaining phenyl hydrogen atoms, these were placed into the structure in accordance with the well-known stereochemistry of such groups, using a C-H distance of 1.0 A. Refinement of Cu, P, and B anisotropically and the 74 other atoms isotropically, carried out in phases because of computer space limitations, led to final values of $R_1 = 0.078$ and $R_2 = 0.079$. R_1 including *all* 3000 reflections was 0.087. A final difference Fourier map showed a peak of 0.7 e^{-}/\mathring{A}^{a} at the Cu atom position and peaks of $\sim 0.5 \text{ e}^{-}/\text{\AA}^3$ near the phenyl rings. In view of the large number (80) of independent atoms, however, anisotropic refinement of carbon atom parameters was not pursued. The estimate of the standard deviation of an observation of unit weight was 1.79. Table I contains the final list of calculated and observed structure factors. In Table I1 are summarized the final atomic positional and thermal parameters for all atoms, together with their standard deviations as estimated from the inverse matrix of the final least-squares refinement cycle. The refinement of the hydrogen atoms of the $B_8H_8^$ group is judged to be more significant than that of the phenyl ring hydrogen atoms, since boron but not carbon atoms were refined anisotropically. Refined positional parameters for individual phenyl hydrogen atoms are included in Table 11.

Description and Discussion **of** the Structure

Octahydrotriboratobis(triphenylphosphine)copper(I) crystallizes as monomeric units with the structure shown schematically in Figures 1 and *2.* Of primary interest is the mode of coordination of the B_3H_8 ⁻ group to the copper atom through terminal hydrogen atoms on two different boron atoms. As evident from Figure *2,* this is achieved by canting the plane of the three boron atoms at an angle of 123' with respect to the plane defined by the $H5-Cu-H6$ bond angle. The fivemembered chelate ring containing atoms Cu, H5, B2, B3, and H6 is not strictly planar, being folded slightly about the line joining H5 and H6. These two hydrogen atoms are situated 0.38 and 0.40 Å, respectively, above the plane defined by the copper and two boron atoms. The observed structural attachment appears to be the preferred one for B_3H_8 ⁻ complexes; it has also been found to occur in the $(OC)_4Cr(B_3H_8)^-$ ion and is thought to exist in several related molecules.⁸

A summary of the geometric features of the copper coordination sphere is contained in Table 111. For comparison purposes, selected results for the related borohydride,⁴ nitrate,¹⁷ and trifluoroacetylacetonate¹⁸ complexes are included in the table. The average Cu-P distance and P-Cu-P angle in the B_3H_8 ⁻ complex are comparable to similar values obtained for the BH_4^- compound. As before,⁴ the angle has opened up considerably from an idealized tetrahedral value,

⁽¹⁷⁾ *G. G.* Messmer **and** *G.* J. **Palenik,** *Can. J. Chem., 47,* **1440** (1969).

⁽IS) M. Bartlett **and** *G.* J. **Palenik,** Acta *Cryst.,* **AN, S173** (1969).

Figure 1.-Perspective drawing of the molecule indicating the atom-labeling scheme. Hydrogen atoms are not shown (see Figure 2).

and the effect is even greater in the nitrate and trifluoroacetylacetonate analogs. Previous considerations⁴ have shown that steric interactions between the triphenylphosphine ligands are not likely to be the sole cause of the large observed P-Cu-P angle. For example, the increase of the P-Cu-P angle from an idealized value of 109.5° to observed values of $>120^{\circ}$ may be rationalized by considering repulsions between electron pairs bonded to the copper atom.¹⁹⁻²¹ For the homologous series of compounds listed in Table 111, the P-Cu-P angle is seen to increase with increasing electronegativity of the donor atoms of the group X. In terms of the electron-pair repulsion theory,²⁰ an increase in the electronegativity of a ligand will cause a decrease in the size of the bonding orbital(s) between that ligand and the central atom. In the present case, more space is made available for expansion of the $P-Cu-P$ bond angle.²² The results of crystal structure analyses of diphenylmethylphosphinecopper(1) complexes, currently in progress, **23** should provide further delineation of the stereochemical and electronic factors responsible for the P-Cu-P angles observed in $[(C_6H_5)_3P]_2CuX$ compounds.

Although the standard deviations in the individual values are large, it is of interest that the average Cu-H distance in $[(C_6H_5)_3P]_2Cu(B_3H_8)$ is approximately 3σ less than the corresponding distance in $[(C_6H_5)_3P]_2$ - $Cu(BH₄)$ (Table III). The Cu-H bonds in the $B₃H₈$ complex are part of a five-membered chelate ring (Figure 1) whereas in $[(C_6H_5)_3P]_2Cu(BH_4)$, the Cu-H bonds participate in a four-membered ring. In the borohydride compound, copper-hydrogen orbital overlap is

Figure 2.-Sketch of the structure showing the mode of attachment of the $B_3H_8^-$ ion to the copper atom and the hydrogenatom-labeling scheme.

TABLE I11 SPHERE IN $[(C_6H_5)_3P]_2CuX$ COMPLEXES^a GEOMETRY OF THE COPPER COORDINATION

Distance	Value, Å	Angle	Value, deg				
$X = B_3H_8b$							
$Cu-P1$	2.274(2)	$P1-Cu-P2$	119.97(7)				
$Cu-P2$	2,288(2)	$P1 - Cu - H5$	111(2)				
Cu–H5	1.84(5)	$P1 - Cu - H6$	108(1)				
Cu-H6	1.85(5)	$P2-Cu-H5$	107(2)				
Cu –B 2	2.30(1)	$P2-Cu-H6$	106(2)				
Cu-B3	2.30(1)	$H5-Cu-H6$	103(2)				
		$Cu-H5-B2$	100(3)				
		$Cu-H6-B3$	98(3)				
$X = BH_4^c$							
$Cu-P$	2.276(1)	$P-Cu-P'$	123.26(6)				
$Cu-H$	2.02(5)	H – Cu – H	69(3)				
Cu-B	2.18(1)	$P-Cu-H (av)$	114				
$X = CF_3COCHCOCH_3^d$							
$Cu-P$	2.25	$P-Cu-P$	127				
$X = NO_3^e$							
Distances not given		$P-Cu-P$	131.1				
		$O-Cu-O$	57.5				

^a Numbers given in parentheses refer to the standard deviation in the last significant figure listed. $\frac{b}{b}$ See Figures 1 and 2 for atom-labeling scheme. ^c Reference 4. ^d Reference 18. e Reference 17.

reduced by the constraint of the small ring (H-Cu-H angle of 69°), and the Cu-H bond lengths are correspondingly greater. A similar effect has been previously noted²⁴ for an iron-sulfur complex containing both sized chelate rings and may be a general phenomenon. Although the possibility of direct Cu-B bonding exists for $[(C_6H_5)_3P]_2Cu(BH_4),$ ⁴ it can probably be ruled out for $[(C_6H_5)_3P]_2Cu(B_3H_8)$, in which the observed Cu-B distances are significantly larger (Table 111).

Table IV summarizes the geometry of the octahydrotriborate ion in $[(C_6H_5)_3P]_2Cu(B_3H_8)$. As depicted in Figure 2, the bridging hydrogen atoms H3 and H8 are not strictly coplanar with the three boron atoms. The ring is slightly puckered with H3 $+0.2$ Å and H8 -0.8 Å out of the plane defined by the boron atoms. Within the limits of error, the average structural features are in excellent agreement with the results of two other X-ray diffraction studies of the B_3H_8 ion (Table V). As evident from Table **17,** the two bridging hydrogen atoms H_b are 0.3-0.4 Å closer to

(24) D. Cuucouvanis and S. J. Lippard, *J. Am. Chetn. SOL.,* **91,** *307* (IYOiJ).

⁽¹⁹⁾ This argument was suggested to us by Professor I<. J. Gillespie (private communication) for the case of $[(C_6H_5)_8P]_2Cu(BH_4)$. Explanations involving Cu-P $\mathrm{d}\pi\mathrm{-d}\pi$ or $\mathrm{p}\pi\mathrm{-d}\pi$ bonding²¹ are also possible.

⁽²⁰⁾ K. J. Gillespie, *Aiiguw. ('hem. Iihtt~n. Ed. Enai., 6,* 810 (1967), and references contained therein.

⁽²¹⁾ S. Ahrland and J. Chatt, *Chzm. Ind.* (London), *96* **(1955).**

⁽²²⁾ The size of the chelate ring opposite the P-Cu-P bond angle may also be a factor in the case of two ligands X with donor atoms of comparable electronegativity. Thus, the four-membered ring in the borohydride complex allows the angle to expand more than dues the five-membered chelate of the octahydrotriborate complex.

⁽²³⁾ S. J. Lippard, **11.** Stowens, and 1). A. Ucku, to be submitted for publication.

B1-H8

 $\emph{^a}$ See footnotes \emph{a} and \emph{b} of Table III.

1.53 (8)

TABLE V SUMMARY OF SELECTED AVERAGE STRUCTURAL

	SUMMARY OF SELECTED AVERAGE SIRUCTURAL			
	FEATURES OF THE B_3H_s ⁻ Group ^a			
Bond ^b	$[(C_6H_5)_{3}P]_{2}Cu(B_3H_8)$	-Distance, Å– (OC) ₄ $Cr-$ $(B_3H_8) - c$	$B_3H_3 - d$	
B_1-H_t	1.2(1)	1.2(1)	$1.05 - 1.20$	
B_1-H_b	1.52(9)	1.43(7)	1.5	
B_2-H_b	1.15(9)	1, 15(7)	1.2	
B_2-H_1	1.10(8)	1.07(7)	$1.05 - 1.20$	
$\rm B_2\text{--}H_m$	1.21(6)	1.29(6)	ℓ	
$\mathrm{B_{2}\!\!-\!\!B_{3}}$	1.76(1)	1.78(1)	1.80	
$B_1 \cdots B_n$	1.82(2)	1.82(1)	1.77	
		-Angle, deg-		
$Angle^b$	$[(C_6H_5)_3P]_2Cu(B_3H_8)$	$(OC)_4Cr(B_3H_8) - c$		B_3H_8 -
$H_b - B_1 - H_b$	144(5)	134(5)		\mathcal{C}_{0}
B_1 -H _b -B ₂	82(5)	89 (4)		ϵ
$H_b - B_2 - B_3$	116(4)	112(3)		\mathcal{C}_{0}
$\rm H_m\text{-}B_2\text{-}B_3$	119(3)	112(3)		ϵ
$H_b - B_2 - H_t$	101(5)	110(5)		ℓ
$H_t - B_2 - H_m$	112(5)	115(4)		\boldsymbol{e}

^a See footnotes a and *b* of Table III. b H_t = terminal hydrogen; H_b = hydrogen bridging two boron atoms; H_m = hydrogen bridging boron and metal atoms; B_1 = unique boron atom (B1 in Figure 2); $B_2 =$ nonunique boron atom (B2, B3 in Figure 2). e Reference 8; L. J. Guggenberger, *Inorg. Chem.,* in press. d Reference 10. d Value not reported.

the two symmetry-equivalent boron atoms B2 and R3 than to the unique boron atom, Bl. This suggests that more negative charge resides on boron atoms B2 and B3 than on Bl, a result consistent with calculated charge distributions for the B_3H_8 ⁻ ion²⁵ and with the use of hydrogen atoms on B2 and B3, rather than those on B1, for metal complex formation.

Dimensions for the triphenylphosphine ligands are summarized in Table VI. The mean P-C distance,

1.822 *8,* C-C distance, 1.39 A, Cu-P-C angle, 114.8", and C-P-C angle, 103.8", are consistent with the values commonly found for coordinated triphenylphosphine ligands.^{4,26} Since the standard deviation of the mean for C-C bond distances is sometimes greater than the individual esd's derived from the least-squares refinement (Table VI), the latter are judged to be less meaningful. Each of the phenyl rings is planar within the limits of experimental error. The relative orientation of these rings is shown in Figure 1.

^a See footnotes *a* and *b* of Table III. ^b C-H bond lengths range from 0.8 to 1.2 Å, with an average value of 1.0 ± 0.1 Å. Since the rings are all planar within the limits of error, a mean value of 120° is required by geometry.

Table VI1 lists the root-mean-square amplitudes of vibration for the six atoms refined anisotropically. The magnitudes $(0.17-0.34 \text{ Å})$ and distribution of these values among the atoms are reasonable, indicating that the thermal parameters have physical significance. For example, the thermal ellipsoid for the Bl atom is somewhat larger than the corresponding ellipsoids for atoms B2 and B3, as would be expected from the observed attachment of the $B_3H_8^-$ ion to the copper atom.

TABLE VI1

ROOT-MEAN-SQUARE AMPLITUDES OF VIBRATION $(\AA)^a$						
Atom ^b	Min	Intermed	Max			
Cu	0.172	0.191	0.207			
P1	0.180	0.195	0.223			
P ₂	0.178	0.209	0.210			
B1	0.23	0.29	0.34			
B ₂	0.18	0.25	0.27			
B ₃	0.20	0.23	0.29			

^aTaken along the principal axes of the thermal ellipsoids. The orientations of these axes may be worked out from the data of Table II and the unit cell parameters. $\ ^{b}$ See Figure 1 for the atom-labeling scheme.

Infrared Spectral Studies

The solid-state (Nujol mull) and chloroform solution infrared spectra of $[(C_6H_5)_8P]_2Cu(B_3H_8)$ in the B-H

(26) M. R. Churchill and T. A. O'Brien, *J. Chem. Soc.*, *A*, 2970 (1968), and references cited therein.

⁽²⁵⁾ W. **X,** Lipscomb, "Boron Hydrides," W. A. Benjamin, Inc, New York, N. *Y.,* 1963, Table3-16, p 110.

Figure 3.-Infrared spectra in the terminal B-H stretching frequency region of (A) $[(C_6H_5)_2CH_3P]_2Cu(B_3H_8)$ and (B) $[(C_6H_5)_3P]_2Cu(B_3H_8)$, both mulled in Nujol.

stretching frequency region have been reported previously.¹ The presence of three strong bands (Figure 3) in the mull spectrum between 2400 and 2500 cm⁻¹, where *terminal* B-H stretching vibrations are known to occur, was originally used to assign a structure to the complex in which the site symmetry of the Cu-B₃H_s attachment was C_{2v} .²⁷ The correct structure (Figure 2) has approximate C_s site symmetry and requires four terminal B-H stretching modes. Two of these presumably have nearly identical energies, giving rise to the observed three bands. Recently the related complex $[(C_6H_5)_2CH_3P]_2Cu(B_3H_8)$ has been synthesized and its solid-state infrared spectrum was recorded.23 As shown in Figure 3, four bands occur in the terminal B-H stretching frequency region, which is consistent with (but does not prove) a structure similar to that found for the triphenylphosphine complex. As with $[(C_6H_5)_3P]_2Cu(B_3H_8)$ and $[(C_6H_5)_3As]_2Cu (B_3H_8)$, however, the infrared spectrum of $(C_6H_5)_{2}$ - CH_3P ₂Cu(B₃H_s) in chloroform solution shows only two broad, overlapping bands. One possible explanation for the difference between the solid-state and solution spectra is that a structural rearrangement has occurred. Attempts to investigate this possibility further by means of proton and ¹¹B nuclear magnetic resonance have thus far not been definitive. The proton nmr spectrum of $[(C_6H_5)_3P]_2Cu(B_3H_8)$ in chloroform at 32° shows a broad structureless line (width at halfheight, 80 Hz) centered at τ 9.5 ppm which sharpens slightly at temperatures down to -28° . Below this temperature solubility becomes a problem. A study of the ¹¹B nmr spectrum under similar conditions showed only a broad peak without structure, a result also obtained by other investigators.⁸

Acknowledgments.--We thank the National Science Foundation for support of this research under Grants GP-6758 and GP-10737, Dr. D. F. Gaines for obtaining ¹¹B nmr spectra, Mr. D. A. Ucko for experimental assistance, and Dr. L. J. Guggenberger for communicating the results of his study prior to publication.

(27) S. J. Lippard and D. **A. Ucko,** *Chem. Con\$azun.,* **983** (1967).